Skip to content Skip to navigation

Twitter posts may shine fresh light on mental illness trends

December 10, 2014
by John DeGaspari
| Reprints

Johns Hopkins computers scientists say their techniques to analyze Twitter posts promise as a tool to gather important information about some common mental illnesses.

By reviewing tweets from users who publicly mentioned their diagnosis and by looking for language cues linked to certain disorders, the researchers say they've been able to quickly and inexpensively collect new data on post-traumatic stress disorder, depression, bipolar disorder and seasonal affective disorder. The researchers say the techniques of mining public data have yielded fresh numbers on cases of these illnesses, allowing for analyses that were previously difficult or expensive to obtain. They emphasize that their findings did not disclose the names of people who publicly tweeted about their disorders.

The researchers say their goal is to share with treatment providers and public health officials some timely additional information about the prevalence of certain mental illnesses. Using computer technology to sift through tweets, they said, can help address the slow pace and high costs associated with collecting mental health data through surveys and other traditional methods.

“With many physical illnesses, including the flu, there are lots of quantifiable facts and figures that can be used to study things like how often and where the disease is occurring, which people are most vulnerable and what treatments are most successful,” according to Glen Coppersmith, a Johns Hopkins senior research scientist who has played a key role in the project, in a prepared statement. “But it's much tougher and more time-consuming to collect this kind of data about mental illnesses because the underlying causes are so complex and because there is a long-standing stigma that makes even talking about the subject all but taboo.”

Coppersmith, who is affiliated with the university's Center for Language and Speech Processing and its Department of Applied Mathematics and Statistics, added, “We're not aiming to replace the long-standing survey methods of tracking mental illness trends. We believe our new techniques could complement that process. We're trying to show that analyzing tweets could uncover similar results, but could do so more quickly and at a much lower cost.”

In August, at the Joint Statistical Meetings in Boston, Coppersmith and colleagues from the U.S. Naval Surface Warfare Center spoke about their promising early results in an ongoing study that uses Twitter posts to study mental illness in particular geographic areas.

Their analyses indicated that PTSD was more prevalent at military installations that frequently deployed during the recent Iraq and Afghanistan conflicts, and that signs of depression were more evident in locations with higher unemployment rates. While neither of these findings is surprising, they demonstrate that analyzing Twitter posts could become a useful yardstick in quickly measuring mental health trends, particularly after dramatic events such as natural disasters and military conflicts.

The computer algorithms used to discover mental health data from tweets look for words and language patterns associated with these ailments, including word cues linked to anxiety and insomnia, and phrases such as “I just don't want to get out of bed.” The formula for zeroing in on mental health cases was based on a review of more than 8 billion tweets. The technique is built upon earlier Johns Hopkins work led by Mark Dredze, an assistant research professor in the Whiting School of Engineering's Department of Computer Science, which successfully used Twitter posts to track outbreaks of the flu.

“Using Twitter to get a fix on mental health cases could be very helpful to health practitioners and governmental officials who need to decide where counseling and other care is needed most,” says Dredze. “It could point to places where many veterans may be experiencing PTSD, for example, or to towns where people have been traumatized by a shooting spree or widespread tornado damage.”

Topics